色一区二区-色一色在线观看视频网站-色一级-色一涩-日韩欧美一区二区三区四区-日韩欧美一区二区三区在线观看

新聞動態
NEWS
Location:Chinese Academy of Sciences > NEWS  > News in field Carbon Nanotubes

IBM Breakthrough Could Accelerate Carbon Nanotube Electronics

Come: Chinese Academy of Sciences    Date: 2015-10-19 10:49:55


IBM Research today announced a major engineering breakthrough that could accelerate carbon nanotubes replacing silicon transistors to power future computing technologies.

IBM scientists demonstrated a new way to shrink transistor contacts without reducing performance of carbon nanotube devices, opening a pathway to dramatically faster, smaller and more powerful computer chips beyond the capabilities of traditional semiconductors. The results will be reported in the October 2 issue of Science (DOI: 10.1126/science.aac8006).

IBMs breakthrough overcomes a major hurdle that silicon and any semiconductor transistor technologies face when scaling down. In any transistor, two things scale: the channel and its two contacts. As devices become smaller, increased contact resistance for carbon nanotubes has hindered performance gains until now. These results could overcome contact resistance challenges all the way to the 1.8 nanometer node – four technology generations away.

Carbon nanotube chips could greatly improve the capabilities of high performance computers, enabling Big Data to be analyzed faster, increasing the power and battery life of mobile devices and the Internet of Things, and allowing cloud data centers to deliver services more efficiently and economically.

Silicon transistors, tiny switches that carry information on a chip, have been made smaller year after year, but they are approaching a point of physical limitation. With Moores Law running out of steam, shrinking the size of the transistor – including the channels and contacts – without compromising performance has been a vexing challenge troubling researchers for decades.

IBM has previously shown that carbon nanotube transistors can operate as excellent switches at channel dimensions of less than ten nanometers – the equivalent to 10,000 times thinner than a strand of human hair and less than half the size of todays leading silicon technology. IBMs new contact approach overcomes the other major hurdle in incorporating carbon nanotubes into semiconductor devices, which could result in smaller chips with greater performance and lower power consumption.

Earlier this summer, IBM unveiled the first 7 nanometer node silicon test chip, pushing the limits of silicon technologies and ensuring further innovations for IBM Systems and the IT industry. By advancing research of carbon nanotubes to replace traditional silicon devices, IBM is paving the way for a post-silicon future and delivering on its $3 billion chip R&D investment announced in July 2014.

“These chip innovations are necessary to meet the emerging demands of cloud computing, Internet of Things and Big Data systems,” said Dario Gil, vice president of Science & Technology at IBM Research. “As silicon technology nears its physical limits, new materials, devices and circuit architectures must be ready to deliver the advanced technologies that will be required by the Cognitive Computing era. This breakthrough shows that computer chips made of carbon nanotubes will be able to power systems of the future sooner than the industry expected.”

A New Contact for Carbon Nanotubes

Carbon nanotubes represent a new class of semiconductor materials that consist of single atomic sheets of carbon rolled up into a tube. The carbon nanotubes form the core of a transistor device whose superior electrical properties promise several generations of technology scaling beyond the physical limits of silicon.

Electrons in carbon transistors can move more easily than in silicon-based devices, and the ultra-thin body of carbon nanotubes provide additional advantages at the atomic scale. Inside a chip, contacts are the valves that control the flow of electrons from metal into the channels of a semiconductor. As transistors shrink in size, electrical resistance increases within the contacts, which impedes performance. Until now, decreasing the size of the contacts on a device caused a commensurate drop in performance – a challenge facing both silicon and carbon nanotube transistor technologies.

IBM researchers had to forego traditional contact schemes and invented a metallurgical process akin to microscopic welding that chemically binds the metal atoms to the carbon atoms at the ends of nanotubes. This ‘end-bonded contact scheme’ allows the contacts to be shrunken down to below 10 nanometers without deteriorating performance of the carbon nanotube devices.

“For any advanced transistor technology, the increase in contact resistance due to the decrease in the size of transistors becomes a major performance bottleneck,” Gil added. “Our novel approach is to make the contact from the end of the carbon nanotube, which we show does not degrade device performance. This brings us a step closer to the goal of a carbon nanotube technology within the decade.”

< Previous Car’s Catalytic Converter Produces C... Rice University Develops Powerful Me... Next >

?
Tel:+86-28-85241016,+86-28-85236765    Fax:+86-28-85215069,+86-28-85223978    E-mail:[email protected],[email protected],[email protected]
QQ:800069832    Technical Support ac57.com
Copyright © Chengdu Organic Chemicals Co. Ltd., Chinese Academy of Sciences 2003-2025. manage 蜀ICP備05020035號-3
主站蜘蛛池模板: 亚洲国产剧情在线精品视 | 免费韩国美女爽快一级毛片 | 免费一区二区三区久久 | 在线观看免费黄色网址 | 99爱免费观看视频在线 | 久久久久久久国产精品视频 | www.成人| 日韩一区二区三区视频在线观看 | 99精品视频99 | 国产第一页在线观看 | 欧美乱大交xxxxx在线观看 | 久久综合给会久久狠狠狠 | 久草综合在线视频 | 欧美性69| 国产午夜亚洲精品理论片不卡 | 美女视频永久黄网站免费观看韩国 | 99在线国产 | 9191精品国产免费不久久 | 午夜一区二区福利视频在线 | 中文字幕一区二区三区免费视频 | 国产成人a大片大片在线播放 | 欧美aaa视频| 国产黄色自拍视频 | 日韩中文在线观看 | 高清 国产 日韩 欧美 | 亚洲www在线 | 加勒比色久综合在线 | 久久毛片久久毛 | 国产色啪午夜免费视频 | 国产精品久久毛片蜜月 | 亚洲精品在线网站 | 成年人看的黄色片 | 一本色道久久综合亚洲精品高清 | 日本精品久久 | 男人的天堂在线观看视频不卡 | 日韩在线视屏 | 国产一级一国产一级毛片 | 国产免费一级精品视频 | 亚洲小视频网站 | 国产三级视频在线 | 中文字幕有码在线播放 |