色一区二区-色一色在线观看视频网站-色一级-色一涩-日韩欧美一区二区三区四区-日韩欧美一区二区三区在线观看

新聞動(dòng)態(tài)
NEWS
Location:Chinese Academy of Sciences > NEWS  > News in field Carbon Nanotubes

Rice Researchers Determine Electrical Properties of Nanocones and Other Graphene Forms

Come: Chinese Academy of Sciences    Date: 2015-07-01 10:25:51


 Flexing graphene may be the most fundamental method for controlling its electrical properties, according to calculations by theoretical physicists at Rice University and in Russia. The researchers at the Rice lab of Boris Yakobson in association with Moscow researchers discovered that the effect could possibly occur in nanocones and also other graphene forms.

 

The researchers found that the so called electronic flexoelectric effect which involves manipulation of electronic properties a graphene sheet can be achieved by twisting the graphene in a particular way.

The work could be useful for applications that involve elements in flexible touchscreens or memory chips that store bits by tweaking the electric dipole moments of carbon atoms.

A typical graphene is an atom-thick sheet of carbon that is conductive in nature. The electrical charges of the atoms balance each other across the plane. However, on the concave side, the graphenes curvature compresses the electron clouds of the bonds while it expands them on the convex side. This results in the alteration of electric dipole moments that regulate the way in which polarized atoms interact with external electric fields.

The findings of the research published in the American Chemical Societys Journal of Physical Chemistry Letters suggest that it is possible to determine the flexoelectric effect of graphene, which is in the form of a cone of any length or size.

The researchers computed the dipole moments for single atoms in a graphene lattice using density functional theory and calculated their cumulative effect. They showed that their technique can also be applied to other complex shapes including wrinkled sheets or distorted fullerenes to calculate the effect. They have also analyzed most of these shapes.

While the dipole moment is zero for flat graphene or cylindrical nanotubes, in between there is a family of cones, actually produced in laboratories, whose dipole moments are significant and scale linearly with cone length.

Yakobson

He added that carbon nanotubes are seamless graphene cylinders which do not exhibit a total dipole moment. The vector-induced moments cancel out each other when not in zero.

However, this is not the case with a cone. Here, the balance of positive and negative charges differs for each atom owing to slightly varying stresses on the bonds with changes in the diameter. The researchers also pointed out that the atoms in the edge of the cone also contribute electrically. Further, analysis of two cones that are docked edge-to-edge made them cancel out, thereby making the calculations simple.

One possibly far-reaching characteristic is in the voltage drop across a curved sheet. It can permit one to locally vary the work function and to engineer the band-structure stacking in bilayers or multiple layers by their bending. It may also allow the creation of partitions and cavities with varying electrochemical potential, more ‘acidic’ or ‘basic,’ depending on the curvature in the 3-D carbon architecture.

Yakobson

The studys co-authors include Alexander Kvashnin, a graduate student at the Moscow Institute of Physics and Technology and a researcher at the Technological Institute of Superhard and Novel Carbon Materials, and Pavel Sorokin, who has appointments at the Technological Institute of Superhard and Novel Carbon Materials and the National University of Science and Technology, Moscow. Both are former members of the Yakobson Group at Rice.

Yakobson is Rices Karl F. Hasselmann Professor of Materials Science and NanoEngineering, a professor of chemistry and a member of Rice’s Richard E. Smalley Institute for Nanoscale Science and Technology.

The research work was supported by the Russian Federation, Moscow State University, the Russian Academy of Sciences and the Air Force Office of Scientific Researchs Multidisciplinary University Research Initiative. The National Science Foundation and the Air Force Office of Scientific Research supported the work at Rice.

< Previous 3D Mapping of Carbon Nanotube Distrib...ARPA-E Awards PARC Funding to Develop... Next >

?
Tel:+86-28-85241016,+86-28-85236765    Fax:+86-28-85215069,+86-28-85223978    E-mail:[email protected],[email protected],[email protected]
QQ:800069832    Technical Support ac57.com
Copyright © Chengdu Organic Chemicals Co. Ltd., Chinese Academy of Sciences 2003-2025. manage 蜀ICP備05020035號(hào)-3
主站蜘蛛池模板: 午夜成人在线视频 | 亚洲午夜片子大全精品 | 日韩一区二区三区视频在线观看 | 中文字幕精品一区二区2021年 | 亚洲国产tv | 高清欧美性狂猛bbbbbbxxxx | 成人影院免费观看 | 99re8免费视频精品全部 | 精品一久久香蕉国产二月 | 久久久在线 | 人与拘一级a毛片 | 成年男人的天堂 | 亚洲人成高清毛片 | 亚洲一区二区三区一品精 | 日韩亚洲欧美在线 | 成年人毛片 | 69性欧美高清影院 | 国产精品黄在线观看免费软件 | 国产在线播放免费 | 日韩亚洲欧美综合一区二区三区 | 亚洲成av人在线视 | 欧美一级成人影院免费的 | 天天拍拍夜夜出水 | 亚洲男人的天堂在线观看 | 欧美丝袜自拍 | 亚洲国产午夜精品理论片的软件 | 在线一区二区观看 | 国产免费午夜a无码v视频 | 成人一级免费视频 | 国产精品一区二区三区高清在线 | ffee性xxⅹ另类老妇hd | 一级无毛片 | 一本久久a久久精品亚洲 | 国产精品成人一区二区不卡 | 日韩精品一区二区三区视频 | 久久福利青草精品免费 | 一个人的视频日本免费 | 欧美成网站 | 国产精品99精品久久免费 | 国产情侣无套精品视频 | 国产一区亚洲二区三区 |